Blogroll

HSC Mathematics 1st Paper Model Question-4


Time : 3 hrs.                                                                                                                                        Marks. 75
Group -A ( Algebra)

1.         Let IR be the set of real number A, B, Í IR,  f : A        B  defined by f (x) = .                    4
            i)          Find the domain and Range of the function.
            ii)         Show that whether the function is one-one or onto.


 
Or,                   If f (x) =                      3x + 1, x >3
                                                            x2 - 2,  -2 £ x £  3
                                                            2x + 3, x < -2
           
                        find f (2), f ( +4), f (-1)  and f (-3).

2.         Solve the inequality  | 2x +1 | < 3 and show the solution set on real line.                                          3
Or,       If a, b Î IR, then show that in all cases | a b | = | a | | b |.

3.         Find the square root of -7 + 24i .                                                                                                        4
Or,       If ( a + bw + cw2)2 + ( aw + b + cw2)2 + ( aw + bw2 + c)2 = 0, Show that either a = c or b =(a+c).

4.         If the roots of the equation ax2 + bx +c =0 are a, b then prove that (aa +b)-2 +(ab + b )-2 =. 4
Or,       If a, b are the roots of equation ax2 + bx +c =0 and Ã,d are the roots of the equation bx2 + cx +a=0
            find the condition for which .
5.         If  A =    1       1          then by the method of induction show that A2 =   1      n .                            4
                          0        1                                                                                          0      1


 
Or,       If,        M=      x          y          z          then simplify into factors.
                                    x2         y2         z2
                                    x3-1      y3-1      z3-1

6.         Find the number of different arrangements of the letters of the word 'PARALLEL' taken all together.             Find also the number of such arrangement in which the vowels may never be separated.                4

Or,       How many permutations combinations can be made from the letters of the word PROFESSOR taken     4 at a time?
7.         If in he expansion of ( a + 3x)n the first three terms are respectively b, and bx2
            find the value of a, b and n.                                                                                                                4
Or,       Find the coefficient of xn in the expansion of .
8.         Find the sum of the series to n terms:                                                                                                 4
              +    +    + . . . . . . . .

Or,        -   +  -   +  -   +. . . . . . . . .. 

Section -B ( Trigonometry)

9.         If  cot a + cot b = a , tana + tanb = b and  a+b = q, then prove that, ( a - b) tan q = ab.                 4

Or,       If x cos a + y sina = k = xcosb + y sinb,  show that,     .
10.       Solve graphically :   Sin2x - Sinx =0,  0 £ x £ 2p.                                                                              4

Or,       Draw the graphs of the following function.                                                                          
            Y  = Sinx Cos x,  when  - p £ x £ p.


11.       Solve the equation : Cotq + tan q = 2 secq, when -2p < 0< 2p.                                                         4

Or,        cos3q - cosq = Cos5q       0< q < p.

12.       Prove that, tan ( 2tan-1x ) = 2 tan ( tan-1x + tan-1 x3).                                                                        3

Or,       If tan (p cot q) = cot (tanq), show that tanq  = ( 2n +1 ± ), where n Î Z
            and n < - 2 Or n >1.

13.       If  a4 + b4 + c4 = 2c2  ( a2 + b2), show that c = 450 or 1350 .                                                                3

Or,       F or any triangle ABC prove that    Cos  .

Section -C ( Geometry)

14.       A (2, 3) and B ( -1, 4 ) are two fixed points. The ratio of the distances of any point of a set from A          and B is 2:3. Find the equation of the locus.                                                                                               3

Or,       The vertices of a quadrilateral taken in order are ( a, 0), ( -b, 0), ( 0, a), ( 0, -b). show that its area is             zero. Give a geometrical interpretation of this.

15.       a)         OABC is a parallelogram, the side OA is along the x - axis. Equation of OC is y =2x and the             coordinates of B are ( 4, 2). Find the coordinates of A and C and the equation of the diagonal AC.    3

Or,       Show that the area of the triangle formed by the straight lines x =a, y =b, y = mx is ( b -ma)2.
            b)         If the straight lines ax + by +c =0, bx + cy + a =0, cx + ay + b =0 are concurrent show that    3
            a + b + c = 0.
Or        Find the equation of the bisector of the acute angle between the straight lines 2x + y + 3 =0 and
            3x -4y + 7 =0.

16.       a)         A circle passes through the origin and has its centre at the point (4, -5). Find its equation and        the length of the intercepts which it cuts off from the axis.                                                                        3

Or,       O ABC is a square the length of which side is b. with OA and OC as axis of coordinates show that the             equation of the circle circumscribing the square is x2 + y2 = b (x+y). 

            b)         The straight line px + qy =1 touches the circle x2 + y2 =a2. Show that the point (p, q) lies on          a circle.                                                                                                                                           3

Or,       A circle has been drown on the straight line joining the points ( 3,7) and ( 9, 1) as diameters. Show           that the line x + y =4 is a tangent of the circle and find the point of contact.

17.       a)         The focal distance of any point on the parabola y2 = 8x is 8 find the coordinates of the point.
Or,       The vertex of the parabola y = ax2 + bx + c is at the point ( -2, 3) and it passes through the point       3            (0,5). Find the values of a, b, c .

            b)         Taking the axes of the ellipse as the x and y axis find the equation of the ellipse passing    3            through the points ( 2,2) and ( 3, 1). Find also its ecentricity.

Or,       If the eccentricity of an ellipse is zero, Show that the ellipse becomes a circle.

18.       a)         Given that,  -, , express   as linear combinations of .  3
Or,       For what value of a are aand 2a perpendicular to one another.
            b)         Show that the medians of a triangle are concurrent.                                                              3
Or,       Prove that in any triangle ABC, CosC = .

No comments:

Post a Comment