Blogroll

HSC Mathematics 1st Paper (Theoretical) Model Question-2

HSC Mathematics 1st Paper (Theoretical) Model Question for Class XII

1.         State and prove the De Morgan's Law.                                                                                         4
Or,                                                                                
            F: R→R defined by F(x) =  . Find F(5), F(0), and F(-2).
2.         If a, bR then prove that │ a + b│ │ a│ +│b│.                                                                     3 
 Or,                                                                                                                                                                                                                                                                                                                                                                                                                                                        
    (i)    Solve│2x+1│‹ 3 and show the solution set on real line.
    (ii)   Express the inequalities -1 ‹ 2x-3‹ 5 using absolute value sign.

3.         Find the value 0f  .                                                                                                                3
Or,                                                                                  
If x+y+z = 0 and is an imaginary cube root of unity then show that
(x+y+z2)3 +(x+y2+z)3 = 27xyz.                                                                           

4.         Find the condition that the two expressions px2+qx+1 and qx2+px+1 may have                                        a common factor.                                                                                                                             4
Or,                                                                                 
            If α,β,γ are the roots of the equation x3+px2+qx+r=0 then find the value of ∑α3 .        

5.         If A=,  B=   and  C= then prove that, (AB)C = A(BC).                          4
Or,                                                                                 
            Prove that

6.         Find number of permutations of n different things taken r at a time where n and r                          4
            positive integers and n ≥r.
Or,                                                                                 
            Find the number of combinations of the letters of the word THESIS taken 4 letters at a time.

7.         If the 21st and 22nd terms are equal in the expansion of (1+x)44 find the value  of   x.      4                                         
Or,                                                                                 
If y = 2x+3x2+4x3+……………..∞,  show that   x = y-y2+y3- ………………∞.

8.         Find the sum of the squares of the first n natural number.                                                        4
Or,                                                                                    
Sum to n terms of series;

9.         If A+B+C = π, then prove that           4
                                    Or,                                                                                 
Prove that: secx =  .

10.       Draw the graph of y = sinx.cosx, x=    to x =  .                                                                  4
Or,                                                                                 
Solve graphically:  x – tanx =0, where 0 ≤ x ≤ .

11.       Solve:     sec4-sec2  = 2,   when 0≤  ≤3600.                                                                        4                                
Or,                                                                                   
Find general solution of   sin7x  - √3cos4x = sinx.

12.       If sin(πcos θ) = cos(πsin θ), then show that θ = ±sin-1.                                                      3
Or,                                                                                  
Prove that,    cos-1  --   cos-1    = .                       

13.       For any triangle ABC prove that    =                  =   .                                                              3
Or,                                                                                  
If (a+b+c)(b+c-a) = 3bc, then find the value of the angle A.


14.       If A(2, 5), B(5, 9) and D(6, 8) are three vertices of the rhombus ABCD, then find the coordinates of the fourth vertex C and the area of the rhombus.                                               3
Or,                                                                                  
Co-ordinates of the points A and B are (-2,4) and (4,-5) respectively. AB is producedup to 
C such that AB=3BC .Find the co-ordinates of C.

15. a) A straight line passes through the point (-2,-5) and intersect the x and y-axes at A and B respectively such that OA+2.OB=0 where o is the origin . Find its equation.                       3                                                                                                           
      b) Find the equation of the straight line passing through the origin which makes equal 
            angles with the straight lines 2x + 3y - 5 = 0 and 3x + 2y - 7 = 0.                                           3
Or,                                                                                  
     a)    A(h, k) is a point on the straight line 6x-y = 1 and B(h, k) is a point on the straight line
             2x- 5y =5. Find the equation of AB.                                                                                3                                                                                    
     b)   If the straight lines ax+by+c=0; bx+cy+a=0; cx+ay+b=0 are concurrent, then establish
            the relation among a, b and c.                                                                                                        3                                                               

16. a) Find the equation of the circle which cuts off intercept of length 5 and 2 units from
            x and y - axes respectively and whose centre lies on the straight line 2x-y = 6.                   3
b) Find the equation of the tangent to the circle x2 + y2 =a2 which forms a triangle of area a2
with the axes of coordinates.                                                                                                         3
Or,                                                                                 
     a)    Find the equation o OR f the circle which passes through origin and the points of intersection
            of the circle x2+y2 - 2x - 4y- 4 = 0 and the straight line 2x+3y +1 = 0.                                  3
     b)  Find the equation of the chord of the circle  x2+y2=144, whose middle point is (4,-6).      3

17. a) Equation of directrix of the parabola is x – c = 0 and its vertex is at the point (c, 0). Show that the equation of the parabola is y2 = 4(c –c)(x –cz).                                              3
      b) The distance between the focus and the corresponding directrix of an ellipse 16 inches
            and its eccentricity is  ; find the equation of the ellipse.                                                       3  
Or,                                                                                  
a)    Find the equation of the parabola whose vertex is at the point (4,-3), directrix is  parallel to the x-axis and which passes through the point (-4, -7).                                                           3
b)    Find the equation of the hyperabola whose centre is at origin, transeverse axis is along x-axis and passes through the points (6, 4) and (-3, 1).                                                                    3

18. a) ;find a unit vector coplaner with the vectors and and perpendicular to the vector .                                                                                                 3                                                                   
     b)   With the help of the vectors, prove that the diagonals of a parallelogram bisect each-other.  3                                                                                                            
Or,
     a)    Ifthen find │AB│.                                                          3        
     b)   In any triangle ABC, prove that cosA = .                                                                 3
-0-

No comments:

Post a Comment