Blogroll

Mathematics Model Question for Class-X


Class X
Subject : Higher Mathematics
Time: 3  hrs.                                                                                                                      Full Marks:  75

1.         If  A = { c : d} B = { 4, 5} and C = { 6, 7 },  then show that  A ´(BUC) = ( A´B) U ( A´C).             4

Or,       For any sets of A, B, C  show that AÇ( BUC) = (AÇB) U (AÇC)

2.         Answer any two of the following questions:                                                                                3x2=6

            a)         Resolve into factors : 18x3 + 15x2 - x -2
            b)         If  ¹0 then show that ( a+b+c) (x+y+z) = ax + by+cz:
            c)         Resolve into partial fractions: .

3.         Use the method of Mathematical Induction to show that for all n Є N, 12+22+32+ ..............+n2 =                                                                                                                                                       4

Or,       If S = { n: nÎN and 5n – 2n is divisible by 3 }, then show that S = N.

4.         If  y = (a+b) + (a –b) and a2-b2=c3, then show that y3 -3cy -2a =0                                      5

Or,       If    , then show that aa bb cc = 1

5.         Find the domain of the function F (x) =  and determine whether the function is one one or not.   4

 Or,      Sketch the graph of the relation  S = { (x, y): x2 +(y-1)2 =16}and determine the graph whether the relation is a function.

6.         Solve:   6 +  5                                                                                                           4
Or,       Solve and show the solution set on the number line:  .

7.         Solve : x2 – xy = 14,  y2 + xy = 60                                                                                                        4

Or,       Solve : 8yx – y2x  = 16  
                                     2x = y2
8.         Impose a condition on x under which the infinite series, +........... ( upto infinits) will have a sum and find the sum.                                                                                                                4

9.         Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares on
            corresponding sides.                                                                                                                             6

Or,       Prove that the circum-centre, the centroid and the orthocentre of any triangles are collinear.

10.       The medians of a triangle DABC meet at G. Prove that AB2 + BC2 +CA2 =3 ( GA2+GB2+GC2)           4

Or,       ABC is an isosceles triangle and AD is perpendicular to BC. If R be the circumradius of the
            triangle, then prove that AB2 = 2R. AD. 

11.       Construct a triangle having given the base, the vertical angle and the sum of the other two sides.
            ( sign of construction and description are essential)                                                                                    5

Or,       Construct a circle which touches a given straight line at a given point in it and passes through another
            given point outside that line. ( sign of construction and description are essential.)



12.       If  a , b,  c are the position vectors of A, B, C respectively and if the point C divides AB in the ratio
            m:n internally, then prove that  c =                                                                                                  4

Or,       If  a , b , c,  d are the position vectors respectively of the points A, B, C D. then show that ABCD
            will be a parallelogram if and only if b a = c d .

13.       A right circular cone, a semi- sphere and a cylinder of equal heights stand on equal bases. Show      4
            that their volumes are in the ratio 1: 2: 3:.

Or,       Find the length of the diagoanl and the volume of the cube of which the length of the diagonal
            of a face is 8cm.

14.       Answer any three of the following questions :                                                                 3x4=12

            a)         What is Radian? Prove that, Radian is a constant angle.
            b)         If a cos- b sin = c, show that a sin + b cos = ±
            c)         Solve : 5 cosec2x – 7 cotx cosecx – 2 = 0 When  00x  ≤3600.
            d)         If tan  =  and cos is negative then find out the value of  
            e)         A boy running along a circular track at the rate of 5 km. per hour covers an arc in 36 seconds
            which subtends an angle 560 at the centre. Find the diameter of the circle.

15.       Find the standard deviation from the following frequency distribution table .                                5

x
0
1
2
3
4
5
6
7
f
5
10
15
18
25
19
11
6

Or,
            Find the arithmetic mean from the frequency distribution table of the marks obtained in mathematics in    an examination of 50 marks.

Obtained marks
5
10
15
20
25
30
35
40
45
50
Number of students
5
15
20
25
30
35
45
15
6
4



No comments:

Post a Comment